

IB ⋅ **SL** ⋅ **Chemistry**

Practice Paper 1B

Scan here to return to the course

or visit savemyexams.com

Total Marks

/25

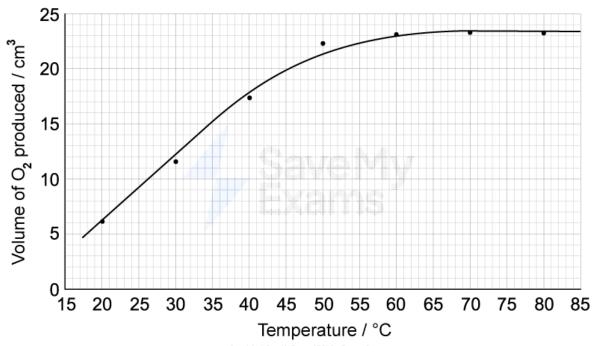
1 (a) A student investigated the effect of temperature on the rate of hydrogen peroxide (H₂O₂) decomposition using manganese(IV) oxide (MnO₂) as a catalyst. The volume of oxygen gas produced in the first 20 seconds was measured at five different temperatures.

$$2H_2O_2$$
 (aq) $\rightarrow 2H_2O$ (l) + O_2 (g)

Temperature / °C	Volume of O ₂ produced / cm ³
20	6.2
30	10.7
40	15.6
50	22.3
60	23.1
70	23.3
80	23.2

(i) Describe the trend shown in the o	(I)	data.
---------------------------------------	-----	-------

[1]


(ii) Use particle theory to explain the effect of increasing temperature on the rate of reaction.

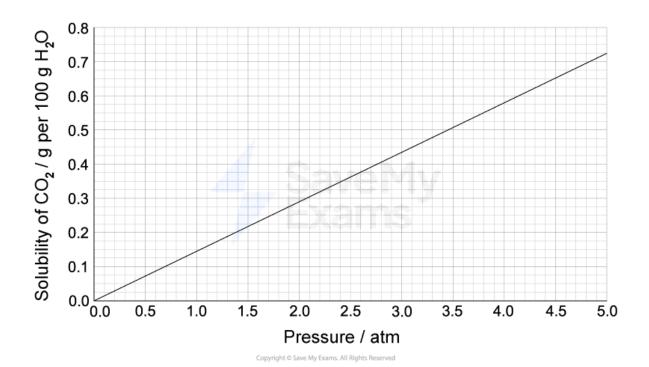
[2]

[1] 40°C
40 °C
[2]
marks)
marks)

(i) Sketch a second curve on the grid below to show how the reaction rate would differ without a catalyst. Label the curve.

[1]

(ii) Explain why the catalyst affects the rate.


[2]

(3 marks)

(e) Suggest one procedural improvement the student could make to increase accuracy in measuring the volume of gas produced.

(1 mark)

2 (a) The graph below shows how the solubility of carbon dioxide (CO₂) in water changes with pressure at a constant temperature of 25 °C.

(i) Describe the trend shown by the graph.

[1]

(ii) State the type of relationship shown between pressure and solubility.

[1]

(2 marks)

(b) Explain the trend using ideas about particle behaviour.

(2 marks)

(C)	(i) Ose the graph to determine the solubility of CO ₂ at 2.5 atm.	
		[1]
	(ii) Use the graph to determine the pressure needed for a solubility of 0.580 g p $\rm H_2O$.	er 100 g
		[1]
		(2 marks)
(d)	Explain why the graph passes through the origin.	
		(1 mark)
(e)	(i) Explain why increasing the temperature would reduce the solubility of ${\rm CO_2}$ in	water.
		[2]
	(ii) Predict how the graph would look if temperature increased.	
		[1]
		(3 marks)
(f)	Suggest one real-world situation that relies on the solubility of gases in liquids.	
		(1 mark)
(g)	Explain why the dissolution of CO_2 in water is considered an exothermic proces	S.
		(2 marks)